Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 145: 213267, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36599197

RESUMO

The use of gene-based products, such as DNA or RNA, is increasingly being explored for various innovative therapies. However, the success of these strategies is highly dependent on the effective delivery of these biomolecules to target cells. Therefore, the development of pH-responsive nanoparticles comprises the creation of intelligent delivery systems with high therapeutic efficiency. In this work, the pH-responsiveness of the poly(2-(diisopropylamino)ethyl methacrylate)) (PDPA) block was investigated for the encapsulation and delivery of small RNAs (sRNA) to cancer cells. The pH responsiveness was dependent on the protonation profile of the tertiary amines of PDPA, which directly affected the electrostatic interactions established with RNA. Thus, block copolymers based on poly(oligo(ethylene oxide) methyl ether methacrylate) (POEOMA) and PDPA, POEOMA-b-PDPA, were synthesized by supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP). The structure of the block copolymers was characterized by size exclusion chromatography and 1H NMR spectroscopy. The copolymers allowed effective complexation of model sRNAs and a pre-miRNA with efficiencies of about 89 % and 91 %, respectively. The characterization by dynamic light scattering revealed that these systems had sizes between 76 and 1375 nm. It was also found that the morphology of the polyplexes depended on the pH, since the preparation at a pH lower than the pKa of the copolymers resulted in spherical but polydisperse particles, while higher pH values resulted in nanoparticles with more homogeneous size, but altered morphology. Moreover, due to pH-responsiveness, it was achieved the release of RNA at pH higher than the pKa of the copolymers, while maintaining its integrity. The polyplexes also showed a high potential to protect RNA from RNases. The transfection of a lung cancer model (A549) and fibroblast cell lines showed that these polyplexes did not cause cell toxicity. In addition, the polyplexes enabled the effective transfection of the A549 cell line with pre-miRNA-29b and miRNA-29b, resulting in a decrease of expression levels of the target DNMT3B gene by approximately 51 % and 47 %, respectively. Overall, the POEOMA-b-PDPA copolymers proved to be a promising strategy for developing responsive delivery systems, that can play a critical role in some diseases, such as cancer, where pH varies between the intra and extracellular environments.


Assuntos
MicroRNAs , Nanopartículas , Polímeros , Metacrilatos/química , Nanopartículas/química , Concentração de Íons de Hidrogênio
2.
Front Bioeng Biotechnol ; 11: 1296444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249801

RESUMO

Since the world first approved gene therapeutics, nucleic acid-based therapies have gained prominence. Several strategies for DNA-based therapy have been approved, and numerous clinical trials for plasmid DNA (pDNA)-based vaccines are currently in development. Due to the rising interest in pDNA for vaccination and gene therapy, plasmid manufacturing must become more effective. One of the most critical steps is downstream processing, involving isolation and purification procedures. To comply with the regulatory guidelines, pDNA must be available as a highly purified, homogeneous preparation of supercoiled pDNA (sc pDNA). This process undertakes several challenges, primarily due to the diversity of molecules derived from the producer organism. In this study, different resins were tested for the adsorption and selective polishing of sc pDNA. To identify optimal pDNA adsorption conditions, batch and column assays were performed with different resins while promoting electrostatic and hydrophobic interactions. The effect of ionic strength, pH, and contact time were evaluated and optimized. Additionally, static and dynamic binding capacities were determined for the selected resins. Analytical chromatography and agarose gel electrophoresis were used to assess the selectivity of the most promising resins toward sc pDNA isoform. Also, genomic DNA, endotoxins, and proteins were quantified to characterize the final sc pDNA quality. At the same time, the recovery and purity yields were evaluated by quantification of sc pDNA after the purification procedure. Overall, the results of the chromatographic assays using agmatine- and arginine-based resins have shown promising potential for sc pDNA polishing. Both resins demonstrated excellent binding capacity for pDNA, with agmatine outperforming arginine-based resin in terms of capacity. However, arginine-based resin exhibited a superior pDNA recovery yield, reaching a notable 52.2% recovery compared to 10.09% from agmatine. Furthermore, both resins exhibited high relative purity levels above 90% for the sc pDNA. The comprehensive characterization of the recovered sc pDNA also revealed a significant reduction in gDNA levels, reinforcing the potential of these prototypes for obtaining high-quality and pure sc pDNA. These findings highlight the promising applications of both resins in scalable pDNA purification processes for gene therapy and biopharmaceutical applications.

3.
Pharmaceutics ; 14(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36365085

RESUMO

The increasing progression of biopharmaceutical-based therapies highlights the demand for efficient chromatographic methods that can be used to purify the desired biomolecules (e.g., nucleic acids, enzymes, or monoclonal antibodies) which are presently under consideration in clinical trials or approved by the Food and Drug Administration. These molecules present distinct chemical and structural properties, which are critical cues for the development and production of adequate chromatographic supports. Until now, it has not been possible to fully control the characteristics of the chromatographic matrices to assure the total reproducibility of their structure and packing. Meanwhile, three-dimensional printing (3DP) is in the early stage of its use in the production of chromatographic supports as a fast, very precise, and reproducible methodology. Although 3DP can provide excellent performance properties to the chromatographic structures, it cannot, per se, lead to high-quality pharmaceutical products. However, the association of affinity ligands, such as amino acids, which is possible in 3DP, could enable the attainment of high-purity yields of the desired molecules. Beyond the amino acids most widely studied as chromatographic ligands, arginine has been successfully immobilized on different chromatographic supports (namely, agarose bead matrices, macroporous matrices, and monoliths) to achieve extra-pure gene therapy products. In this research, we studied the immobilization of arginine on 3DP chromatographic supports, evaluating the stability of the ligand/chromatographic support linkage under different chromatographic conditions to determine the robustness of these new prototypes. Moreover, we also applied plasmid DNA samples to these supports to observe the practical behaviour of the developed arginine 3DP chromatographic structures.

4.
Methods Mol Biol ; 2466: 135-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585316

RESUMO

Nucleic acid-based therapy has been emerging as a new strategy with great potential for the treatment of numerous diseases, especially those caused by gene defects. In this context, biotechnology plays a critical role on establishing suitable processes for biopharmaceuticals manufacturing, while the purification step still imposes a major burden. Affinity chromatography using amino acids as specific ligands has been successfully applied for plasmid DNA purification. In this protocol, we describe the process for nucleic acids production and extraction, as well as the chromatographic matrix synthesis for separation between DNA and RNA. This novel arginine-macroporous support presents excellent binding capacity and great robustness for nucleic acids isolation.


Assuntos
Ácidos Nucleicos , RNA , Arginina/química , Cromatografia de Afinidade/métodos , DNA/genética , Plasmídeos/genética , RNA/química , RNA/genética
5.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268719

RESUMO

Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.


Assuntos
Líquidos Iônicos , Cromatografia Líquida/métodos , Líquidos Iônicos/química , Polímeros/química , Proteínas
6.
Mol Biol Rep ; 49(5): 3893-3901, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35178684

RESUMO

BACKGROUND: The production of nucleic acids (plasmid DNA or mRNA) in response to the development of new advanced vaccine platforms has greatly increased recently, mostly resulting from the pandemic situation. Due to the intended pharmaceutical use, nucleic acids preparations must fulfill all the required specifications in terms of purity and quality. Chromatography is a standard operation used to isolate these molecules from impurities, playing a central role in the manufacturing processes. However, the mechanism of nucleic acid adsorption in chromatographic resins is poorly understood, often leading to low adsorption capacities and a lack of specificity. METHODS AND RESULTS: Here we investigated the adsorption of plasmid DNA and RNA molecules onto arginine-agarose, a resin with potential for large-scale application. Equilibrium batch studies were performed through pre-purified samples, using arginine-based ligands by varying the adsorption conditions in the pH value range from 6.0 to 9.0. Langmuir and Freundlich isotherm models were used to describe the adsorption equilibrium. The best fit for both nucleic acids was achieved using the Freundlich model. The correct choice of pH showed critical for controlling the efficacy of arginine-nucleic acid interaction, due to its influence on the nucleic acid structures. This type of analysis is necessary for the improvement of the selectivity and binding capacities of the resins used for plasmid DNA or mRNA purification. CONCLUSIONS: The results presented here indicate that adsorption conditions can be tuned to enhance separation between pDNA and RNA, an important feature in the purification of nucleic acids for vaccine production.


Assuntos
Arginina , RNA , Adsorção , Cromatografia de Afinidade/métodos , DNA , Plasmídeos/genética , RNA/química , RNA Mensageiro , Sefarose
7.
Pharmaceutics ; 13(12)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34959371

RESUMO

The perspective of using messenger RNA (mRNA) as a therapeutic molecule first faced some uncertainties due to concerns about its instability and the feasibility of large-scale production. Today, given technological advances and deeper biomolecular knowledge, these issues have started to be addressed and some strategies are being exploited to overcome the limitations. Thus, the potential of mRNA has become increasingly recognized for the development of new innovative therapeutics, envisioning its application in immunotherapy, regenerative medicine, vaccination, and gene editing. Nonetheless, to fully potentiate mRNA therapeutic application, its efficient production, stabilization and delivery into the target cells are required. In recent years, intensive research has been carried out in this field in order to bring new and effective solutions towards the stabilization and delivery of mRNA. Presently, the therapeutic potential of mRNA is undoubtedly recognized, which was greatly reinforced by the results achieved in the battle against the COVID-19 pandemic, but there are still some issues that need to be improved, which are critically discussed in this review.

8.
Sensors (Basel) ; 21(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770321

RESUMO

The fast spread of SARS-CoV-2 has led to a global pandemic, calling for fast and accurate assays to allow infection diagnosis and prevention of transmission. We aimed to develop a molecular beacon (MB)-based detection assay for SARS-CoV-2, designed to detect the ORF1ab and S genes, proposing a two-stage COVID-19 testing strategy. The novelty of this work lies in the design and optimization of two MBs for detection of SARS-CoV-2, namely, concentration, fluorescence plateaus of hybridization, reaction temperature and real-time results. We also identify putative G-quadruplex (G4) regions in the genome of SARS-CoV-2. A total of 458 nasopharyngeal and throat swab samples (426 positive and 32 negative) were tested with the MB assay and the fluorescence levels compared with the cycle threshold (Ct) values obtained from a commercial RT-PCR test in terms of test duration, sensitivity, and specificity. Our results show that the samples with higher fluorescence levels correspond to those with low Ct values, suggesting a correlation between viral load and increased MB fluorescence. The proposed assay represents a fast (total duration of 2 h 20 min including amplification and fluorescence reading stages) and simple way of detecting SARS-CoV-2 in clinical samples from the upper respiratory tract.


Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Humanos , Pandemias , RNA Viral , Sensibilidade e Especificidade
9.
Materials (Basel) ; 14(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771756

RESUMO

The negligible volatility and high tunable nature of ionic liquids (ILs) have been the main drivers of their investigation in a wide diversity of fields, among which is their application in areas involving pharmaceuticals. Although most literature dealing with ILs is still majorly devoted to hydrophobic ILs, evidence on the potential of hydrophilic ILs have been increasingly provided in the past decade, viz., ILs with improved therapeutic efficiency and bioavailability, ILs with the ability to increase drugs' aqueous solubility, ILs with enhanced extraction performance for pharmaceuticals when employed in biphasic systems and other techniques, and ILs displaying low eco/cyto/toxicity and beneficial biological activities. Given their relevance, it is here overviewed the applications of hydrophilic ILs in fields involving pharmaceuticals, particularly focusing on achievements and advances witnessed during the last decade. The application of hydrophilic ILs within fields involving pharmaceuticals is here critically discussed according to four categories: (i) to improve pharmaceuticals solubility, envisioning improved bioavailability; (ii) as IL-based drug delivery systems; (iii) as pretreatment techniques to improve analytical methods performance dealing with pharmaceuticals, and (iv) in the recovery and purification of pharmaceuticals using IL-based systems. Key factors in the selection of appropriate ILs are identified. Insights and perspectives to bring renewed and effective solutions involving ILs able to compete with current commercial technologies are finally provided.

10.
Life (Basel) ; 11(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685465

RESUMO

High quality nucleic acids (with high integrity, purity, and biological activity) have become indispensable products of modern society, both in molecular diagnosis and to be used as biopharmaceuticals. As the current methods available for the extraction and purification of nucleic acids are laborious, time-consuming, and usually rely on the use of hazardous chemicals, there is an unmet need towards the development of more sustainable and cost-effective technologies for nucleic acids purification. Accordingly, this study addresses the preparation and evaluation of silica-based materials chemically modified with chloride-based ionic liquids (supported ionic liquids, SILs) as potential materials to effectively isolate RNAs. The investigated chloride-based SILs comprise the following cations: 1-methyl-3-propylimidazolium, triethylpropylammonium, dimethylbutylpropylammonium, and trioctylpropylammonium. All SILs were synthesized by us and characterized by solid-state 13C Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), elemental analysis, and zeta potential measurements, confirming the successful covalent attachment of each IL cation with no relevant changes in the morphology of materials. Their innovative application as chromatographic supports for the isolation of recombinant RNA was then evaluated. Adsorption kinetics of transfer RNA (tRNA) on the modified silica-based materials were investigated at 25 °C. Irrespective to the immobilized IL, the adsorption experimental data are better described by a pseudo first-order model, and maximum tRNA binding capacities of circa 16 µmol of tRNA/g of material were achieved with silica modified with 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Furthermore, the multimodal character displayed by SILs was explored towards the purification of tRNA from Escherichia coli lysates, which in addition to tRNA contain ribosomal RNA and genomic DNA. The best performance on the tRNA isolation was achieved with SILs comprising 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Overall, the IL modified silica-based materials represent a more efficient, sustainable, and cost-effective technology for the purification of bacterial RNAs, paving the way for their use in the purification of distinct biomolecules or nucleic acids from other sources.

11.
Pharmaceutics ; 13(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34575473

RESUMO

Dementia is described as the fifth leading cause of death worldwide and Alzheimer's disease (AD) is recognized as the most common, causing a huge impact on health costs and quality of patients' lives. The main hallmarks that are commonly associated with the pathologic process are amyloid deposition, pathologic Tau phosphorylation and neurodegeneration. It is still unclear how these events are linked to the disease progression, due to the complex pathologic mechanisms. Nevertheless, several hypotheses have been proposed for a better understanding of AD. The AD diagnosis is performed by using a combination of several tools to detect ß-amyloid peptide (Aß) deposits and modifications in cognitive performance, sometimes being expensive and invasive. In the treatment field, there is still an absence of effective treatments to delay or stop the progression of the disease, with most of the approved drugs used to relieve symptoms, and all of them with significant adverse side effects. Considering all limitations, the need to establish new and more effective diagnostic and therapeutic strategies becomes clear. This review aims not only to describe the disease and its impact but also to collect the currently available diagnostic and therapeutic strategies, highlighting new promising RNA-based strategies for AD.

12.
Methods Mol Biol ; 2197: 207-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32827139

RESUMO

Human papillomavirus (HPV ) has been extensively associated with the development of cervical cancer due to the expression of oncoproteins like E7. This protein can interfere with pRB tumor suppressor activity, enabling the uncontrolled proliferation of abnormal cells. DNA vaccines are known as the third-generation vaccines, providing the ability of targeting viral infections such as HPV in a preventive and therapeutic way. Although current strategies make use of plasmid DNA (pDNA) as the vector of choice to be used as a DNA vaccine, minicircle DNA (mcDNA) has been proving its added value as a non-viral DNA vector by demonstrating higher expression efficiency and increased biosafety than the pDNA. However, due to its innovative profile, few methodologies have been explored and implemented for the manufacture of this molecule. This chapter describes the detailed procedures for the production, extraction, and purification of supercoiled E7-mcDNA vaccine, by using size-exclusion chromatography to obtain mcDNA with a purity degree which meets the regulatory agency criteria. Then, the assessment of E7 antigen expression through immunocytochemistry is also described.


Assuntos
DNA Circular/isolamento & purificação , Vacinas contra Papillomavirus/isolamento & purificação , Plasmídeos/isolamento & purificação , Vacinas de DNA/isolamento & purificação , Técnicas de Cultura de Células , Cromatografia em Gel , Escherichia coli/genética , Fermentação , Expressão Gênica , Imuno-Histoquímica , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia
13.
Nucleic Acid Ther ; 31(1): 82-91, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33252302

RESUMO

Minicircle DNA (mcDNA) has been suggested as a vanguard technology for gene therapy, consisting of a nonviral DNA vector devoid of prokaryotic sequences. Unlike conventional plasmid DNA (pDNA), this small vector is able to sustain high expression rates throughout time. Thus, this work describes the construction, production, and purification of mcDNA-p53 and its precursor parental plasmid (PP)-p53 for a comparative study of both DNA vectors in the growth suppression of human papillomavirus (HPV)-18-infected cervical cancer cells. First, live cell imaging and fluorescence microscopy studies allowed to understand that mcDNA-p53 vector was able to enter cell nuclei more rapidly than PP-p53 vector, leading to a transfection efficiency of 68% against 34%, respectively. Then, p53 transcripts and protein expression assessment revealed that both vectors were able to induce transcription and the target protein expression. However, the mcDNA-p53 vector performance stood out, by demonstrating higher p53 expression levels (91.65 ± 2.82 U/mL vs. 74.75 ± 4.44 U/mL). After assuring the safety of both vectors by viability studies, such potential was confirmed by proliferation and apoptosis assays. These studies confirmed the mcDNA-p53 vector function toward cell cycle arrest and apoptosis in HPV-18-infected cervical cancer cells. Altogether, these results suggest that the mcDNA vector has a more promising and efficient role as a DNA vector than conventional pDNA, opening new investigation lines for cervical cancer treatment in the future.


Assuntos
Papillomavirus Humano 18/genética , Infecções por Papillomavirus/terapia , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/terapia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/farmacologia , Feminino , Técnicas de Transferência de Genes , Terapia Genética/tendências , Papillomavirus Humano 18/patogenicidade , Humanos , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Plasmídeos/genética , Proteína Supressora de Tumor p53/farmacologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
14.
Front Bioeng Biotechnol ; 8: 547857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178668

RESUMO

Deoxyribonucleic acid (DNA) carries the genetic information essential for the growth and functioning of living organisms, playing a significant role in life sciences research. However, the long-term storage and preservation of DNA, while ensuring its bioactivity, are still current challenges to overcome. In this work, aqueous solutions of ionic liquids (ILs) were investigated as potential preservation media for double stranded (dsDNA). A screening of several ILs, by combining the cholinium, tetrabutylammonium, tetrabutylphosphonium, and 1-ethyl-3-methylimidazolium, cations with the anions bromide, chloride, dihydrogen phosphate, acetate, and glycolate, was carried out in order to gather fundamental knowledge on the molecular features of ILs that improve the dsDNA stability. Different IL concentrations and the pH effect were also addressed. Circular dichroism (CD) spectroscopy was used to evaluate the conformational structure and stability of dsDNA. IL-DNA interactions were appraised by UV-Vis absorption spectrophotometry and 31P nuclear magnetic resonance (NMR) spectroscopy. The results obtained demonstrate that pH has a significant effect towards the dsDNA stability. Amongst the ILs investigated, cholinium-based ILs are the most promising class of ILs to preserve the dsDNA structure, in which electrostatic interactions between the cholinium cation and the DNA phosphate groups play a significant role as demonstrated by the 31P NMR data, being more relevant at higher IL concentrations. On the other hand, the denaturation of dsDNA mainly occurs with ILs composed of more hydrophobic cations and able to establish dispersive interactions with the nucleobases environment. Furthermore, the IL anion has a weaker impact when compared to the IL cation effect to interact with DNA molecules. The experimental data of this work provide relevant fundamental knowledge for the application of ILs in the preservation of nucleic acids, being of high relevance in the biotechnology field.

15.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076502

RESUMO

The efficacy of brain therapeutics is largely hampered by the presence of the blood-brain barrier (BBB), mainly due to the failure of most (bio) pharmaceuticals to cross it. Accordingly, this study aims to develop nanocarriers for targeted delivery of recombinant precursor microRNA (pre-miR-29b), foreseeing a decrease in the expression of the BACE1 protein, with potential implications in Alzheimer's disease (AD) treatment. Stearic acid (SA) and lactoferrin (Lf) were successfully exploited as brain-targeting ligands to modify cationic polymers (chitosan (CS) or polyethyleneimine (PEI)), and its BBB penetration behavior was evaluated. The intracellular uptake of the dual-targeting drug delivery systems by neuronal cell models, as well as the gene silencing efficiency of recombinant pre-miR-29b, was analyzed in vitro. Labeled pre-miR-29b-CS/PEI-SA-Lf systems showed very strong fluorescence in the cytoplasm and nucleus of RBE4 cells, being verified the delivery of pre-miR-29b to neuronal cells after 1 h transfection. The experiment of transport across the BBB showed that CS-SA-Lf delivered 65% of recombinant pre-miR-29b in a period of 4 h, a significantly higher transport ratio than the 42% found for PEI-SA-Lf in the same time frame. Overall, a novel procedure for the dual targeting of DDS is disclosed, opening new perspectives in nanomedicines delivery, whereby a novel drug delivery system harvests the merits and properties of the different immobilized ligands.

16.
N Biotechnol ; 59: 1-9, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32622863

RESUMO

New biotechnological strategies are being explored, aimed at rapid and economic manufacture of large quantities of DNA vaccines with the required purity for therapeutic applications, as well as their correct delivery as biopharmaceuticals to target cells. This report describes the purification of supercoiled (sc) HPV-16 E6/E7 plasmid DNA (pDNA) vaccine from a bacterial lysate, using an arginine-based monolith, presenting a spacer arm in its configuration. To enhance the performance of the purification process, monolith modification with the spacer arm can improve accessibility of the arginine ligand. By using a low NaCl concentration at pH 7.0, a condition to eliminate the RNA impurity directly in the flow through was established. The pH increase to 7.5 allowed the elimination of non-functional pDNA isoforms, the sc pDNA being recovered by increasing the ionic strength. As well as a binding capacity of 2.53 mg/mL obtained with a pre-purified sc pDNA sample, the column also purified sc pDNA from high lysate loading, with capacities above 1 mg/mL. Due to the sample displacement phenomena, non-functional pDNA isoforms were eliminated throughout column loading, favoring the degree of purity of final sc pDNA of 93.3%-98.5%. Thereafter, purified sc pDNA was successfully encapsulated into CaCO3-gelatin nano-complexes. Delivery of the pDNA-carriers to THP-1 cells was assessed through pDNA cellular uptake evaluation and correct E6 expression was verified by mRNA and protein detection. A biotechnological platform was established for sc pDNA purification and delivery to dendritic cells, stimulating further in vivo studies.


Assuntos
Alphapapillomavirus/imunologia , Biotecnologia , DNA Super-Helicoidal/imunologia , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Proteínas Repressoras/imunologia , Vacinas de DNA/imunologia , Humanos , Plasmídeos/imunologia , Vacinas de DNA/isolamento & purificação
17.
Trends Biotechnol ; 38(10): 1047-1051, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32409109

RESUMO

Minicircle DNA (mcDNA) is a smaller and safer version of non-viral DNA vectors that results from a cutting-edge in vivo recombination process to excise prokaryotic sequences from plasmid DNA (pDNA). Considering the molecule's potential and increasing interest as a non-viral DNA-based therapeutic, biomanufacturing methodologies need to be improved, especially in downstream processing.


Assuntos
Biotecnologia/métodos , DNA , Vetores Genéticos , Plasmídeos
18.
J Biomol Struct Dyn ; 38(8): 2276-2286, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31204609

RESUMO

Using a molecular dynamics approach, the study of the interaction between six different known ligands and a predicted pre-miRNA 149 RNA G-quadruplex (rG4) structure is reported. The stabilization of rG4 structures formed within the pre-miRNA stem-loop regions using small ligands is an attractive anticancer strategy. Particularly, miRNA-149 is upregulated in a variety of cancers such as prostate cancer and is therefore a potential target for drug development. The results show that ligands C8 and PhenDC3 interact with the rG4 structure via stacking interactions with the end G-quartets. Ligands [16]phenN2, [32]phen2N4 and pyridostatin on the other hand bind the loops/groove interface of the rG4 being H-bonding and electrostatic interactions the driving force of the interaction. The C8 precursor, C8-NH2, emphasizes the structural nuances of the rG4 short loops as the lack of a large terminal aromatic moiety produced a mixed stacking-groove binding mode. Overall, this study may help the design of specific ligands for pre-miRNA rG4 towards anticancer therapeutics development.Communicated by Ramaswamy H. Sarma.


Assuntos
Quadruplex G , MicroRNAs , Humanos , Ligantes , Masculino , MicroRNAs/genética , Simulação de Dinâmica Molecular , Eletricidade Estática
19.
Drug Discov Today ; 24(10): 2044-2057, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31398400

RESUMO

Cervical cancer is the fourth most common cancer among women worldwide and its development is mainly associated with human papillomavirus infection, a highly sexually transmissible virus. The expression of E6 and E7 viral oncoproteins deregulates cell repairing mechanisms through impairment of tumor suppressor protein functions, such as p53 or retinoblastoma protein. Although the implementation of new preventive vaccines has decreased the infection rate and cervical cancer progression, there are still many women who are affected by this pathology. Nowadays, the main treatment often requires the use of invasive techniques. From well-established strategies, like DNA vaccines and gene therapy, to innovative gene silencing technologies; different methodologies are currently under scrutiny that target the E6 and E7 oncoproteins and/or their modes of action.


Assuntos
Descoberta de Drogas/métodos , Proteínas Oncogênicas Virais/antagonistas & inibidores , Proteínas E7 de Papillomavirus/antagonistas & inibidores , Infecções por Papillomavirus/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/virologia , Feminino , Humanos , Infecções por Papillomavirus/virologia
20.
Biochem Mol Biol Educ ; 47(6): 638-643, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390150

RESUMO

This laboratory experiment describes the production and purification of plasmid DNA for undergraduate biochemistry and biotechnology courses. This experiment performed in a one-week period includes the protocols for plasmid pVAX1-LacZ production in Escherichia coli DH5α cells and subsequent purification of supercoiled pVAX1-LacZ. Firstly, the students use a growth medium that favors the replication of the plasmid resulting in a higher plasmid production during exponential growth. Afterwards, alkaline lysis is done to disrupt the bacterial cells and recover pVAX1-LacZ plasmid. Lastly, they perform the purification of pVAX1-LacZ supercoiled isoform by L-histidine chromatography, followed by agarose gel electrophoresis to characterize the separation of supercoiled isoform from contaminants. The proposed experiment provides an opportunity for students to acquire these skills that are routinely used in biochemistry and biotechnology laboratories. © 2019 International Union of Biochemistry and Molecular Biology, 47(6):638-643, 2019.


Assuntos
Bioquímica/educação , Biotecnologia/educação , Currículo , DNA Bacteriano/biossíntese , DNA Bacteriano/isolamento & purificação , Plasmídeos/biossíntese , Plasmídeos/isolamento & purificação , DNA Bacteriano/genética , Escherichia coli/citologia , Escherichia coli/metabolismo , Humanos , Laboratórios , Plasmídeos/genética , Estudantes , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...